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are determined by the form coefficientsofthe considered grid, which depend only OIY 

the latter geometric properties. 
The properties of Green’s functions and of perturbation potentials for grids of oscilla- 

ting mono- and dipoles have been investigated. 
The author thanks M. I. Gurevich for discussing certain results of this investigation and 

for his valuable advice. 
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Solution of the problem of the stabilized lens of fresh-water filtering from a 
channel is derived. At the free surface of the latter the stream function is spe- 
cified in the form of a linear combination of coordinates which includes the 
particular relationships previously considered by Emikh [ 11. The boundary sepa- 
rating fresh and saline waters, the free surface, and the characteristic dimensions 
of the lens are determined with the use of the analytic theory of linear differ- 

ential equations. 

1. Statement of the problem. The geometry of the considered flow region 
is shown in Fig. 1. A porous medium of constant porosity m and filtration coefficientK 

occupies the lower half-plane y < 0 . Fresh 
water of density pi filters from the channel 
A’BA of width 2/r, and penetrates the sur- 
face of the more sense ground water depres- 
sing it in the form of a lens G u G’. It is 
assumed that the saline water of density 

Fig. 1 pz (pa > or) lying below the separation 
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boundary M’D’CDM is stagnant and that the motion in the lens is stabilized, owing 
to the evaporation from the free surface rI iJ rI’ which is specified by the following 

linear relation between the stream function 9 and the free surface coordinates: 1c, - 
QJ $- Er11: = const. Owing to the flow symmetry about the axis 5 = 0 , only its right- 

hand half 2 > 0 is considered below. 
By introducing parameters 

the reduced potential cp and the reduced stream function defined as previously by Q, 

being harmonic functions, for the assumptions made above, satisfy the following condi- 

tions [2] : 
(Pl_4B =$IBC =$1)CD = (q --6y --6,)lCD = (9 + dIDA = 

(+ + PX -V~Y - pL --YT)DA = 0 (14 

In the process of solving this problem parameters /_L, Y, the channel width 2h , and the 
maximum distance T of the free surface from the axis y = 0 are considered to be 

specified positive numbers and 

0-K P,V< 1, PC6 (1.2) 

We introduce the following functions : z ( g) (z = 5 f iy) which conformally maps 

the upper half-plane Rc+ of the plane of the auxiliary variable 5 = g f iq onto the 

A j/ flow region G (the correspondence of points is 

where 1/c - (5 denotes a branch continuous 

inR+suchthatargjf/5--o=Owhen c=E>cr. 

2. Construction of function8 r! and 2. With the indicated selection of 
the root branch,the conditions(l.1) lead to the following boundary value problem for 
52 and Z (see p]): along the real axis q = 0 we have 

Im (Q -2) = Im [(i -v) Q + i$T] = 0 (--<<<<) 

ImQ=ImZ=O (O<C<i) (2.1) 

Im 52 = Im (iQ + iSZ) = 0 (i<E<+=) 
(Im f and Re f are the imaginary and the real parts of f , respectively). Boundary 

conditions (2.1) and the Schwarz principle of symmetry make it possible to extend Q 
and 2 into the lower half-plane and, then, to determine formulas for bypassing singular 
points 0, 1 and 00 [a]. It can be shown that in this case 

[v - i (1 + p)] Q- = [Y + i (1 - p)] Q+ $- 2iyZ+ (5 = 51 = 0) 

Iv - i (1 + p)] Z- = 2&J+ + [v - i (1 - p)] Z+ 

Q- = Qf, u- = - 2Q2f -&z+ (5 = 52 =I ) (2.2) 

[v + i (1 + p)l SF = [v - i (1 - p)l Q+ -.2iyZ+ (5 = 53 = 00) 

[v + i (1. + p)] Z- = -2 [v - i (6 + 1 - p)l S2+ / 6 - 

[v + i (1 - p - 4/L / 6)l z+ 
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where for k = I,2 symbols Q2+ and Z+ denote, respectively, the limit values of 52 and 
2 from Rc+ along segment ( ck, ck.+J of the real axis, and B- and .?? denote the 

limit values of these functions along the same segment after point ck had been bypassed 
in a clockwise direction by a 2~ angle. For %3 symbols Q2’ and 2’ have the same 
meaning but with respect to the variable 7 = - l/c. 

Let us consider the Riemann differential equation 

$ + 4 (5) T + k, (5) Q = 0 

lc1(5) = 
1- a1 - p1 

5 + i -ccLz; Pa (2.3) 

k, (5) = f t51_ 1J (- 9 + -&- + a&) 

with three singular points 0, 1 and 00 with exponents a,, Bl,..., fl3 which satisfy the 

Fuchs condition L3] cc1 + PI + a2 + 83 + a3 + fi3 = i (2.4) 

We assume that for a certain choice of exponents the unknown functions 51 and 2 are 

solutions of this equation [2]. To determine these we make use of the fact that, except 
in certain particular cases, the fundamental solutions of Eq. (2.3) in the neighborhood 
of the singular point ck (k = 1, 2) can be represented in the form 4>,h’ (5) = (5 - 

ck)ak~lk (L)and @” (5) = (5 - ck)Ph.%k (5) ,where functions (&k and Qzk 
are nonzero at point 5 k and holomorphic in its neighborhood. In the neighborhood of the 
infinitely distant singular point these representations remain valid but with the obvious 

substitution of. -l/c for 5 , and a3 and /33 for ahand fj k , respectively. By virtue of 
the above assumption it must be possible to find such constants uk, bk, ck and dk that 
in some neighborhood of point ck 

!A = a,@,” + b,$@, z = ch.Olh + d,@,’ (2.5) 

This makes it possible to determine formulas for bypassing Q and %. Comparing these 
with (2.2) and using the reasonable limitation w + const,, we obtain 

a, = m,, B1 = 2p + n,, a2 = m2 

$2 = n2 + l/2, a3=q-_p+m3+l/2 

p3= _q_p+n3+ 1, ~~PG-tW 1 0, S<p@ + 6) 
a, = - PC17 a2 = - 6c2, b, = 4, b2 = 0 (2.6) 

a3 = 2ipc3 I (a + Y - 2ip I S), b, = - 2ipd, I (a -v + 2ip / 6) 

2xp = arc tg +, 2nq = arctg 6-P0~+6) 

a = Iv2 + 4y (6 -p) (1 + 6) / h21’$ I[ arc tg . ..I < n/2 

where m,, n,, . . . . n3 are, SO far undetermined, integers. 
The integrability (in the conventional meaning) of functions Q / 1/c - 0 and -- 

N&-- 0 in each neighborhood of singular points c,implies that a,, &, %, 83 > 
- 1, and a3, b 3 > l/3. By virtue of (2.8) this means that m, > 0, m2 > 0, n, > 
- l,nz>--1, m3>1,n3>Ofor 6>p(2+6)andn3>lfor 6< 
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/J (2 $- 6). The hodograph shown in Fig, 3 (for the case in which (1.2) is satisfied) 
provides further inequalities. Thus from (2.5) and (2.6) follows that for 5 = 0 

Fig. 3 A 
+ 

w (0) = lim i dl - c& lxl-fL ahI / al,21 

r-0 dl + CI< ax-p1 ah1 / CDZl 

Hence w (0) = i only for a, > pi. Similarly we 

obtain that cz2 > p2 and czs > /3s, i.e. m, > n, + 

1, m2 > n2 + 1, m3 > n3 + 1 for 6 >, p (23-Q 
and m3 > na for 6 < p (2 -/- 8). The substitution 
of a k and fi k from (2.6) into condition (2.4) reduces the 

latter to the equation in integral numbers 

It follows from this that m, = m2 = 0, n, = n2 = - 1, m3 = 1, n3 = 0 for 

6>~(2+8),andna=l for6<y(2+6).Hence 

a, = czs = 0, pi y 1 - y = 2p - 1, p2 = -l/z (2.7) 

a3 = a = q -p + 3/2, p3==p=1-q-p 

It was shown in [3] that fundamental solutions of Eq. (2.3) can be presented as follows: 

@i1 = F (a, B; y; 5) 

CD21 = [l-yF (a + 1 - y, p + 1 - y; 2 - y; 5) 

cD12= F(a,p; a-1-131 -7~; 1-c) (2.8) 

@; = (1 -5)wT (y - a, y - p; y + 1 - a - B; 1 -C) 

@rs = (- 5 )-“F ( a, a + 1 - y; a f.1 - B; 1 / 5) 

a$3 = (- ZJ-:'F (p f 1 - y, 0; p + 1 - a; 115) 

where F (a, p; y; ‘5 ) is a hypergeometric series convergent within a unit circle, and 
5” (h is real) denotes the branch which is continuous in Rc+ and is determined by the 
equality 5). = 1 51)~ eiQrg<, where arg 5 lies between - rc and n (the section 
along the negative semiaxis). 

The determination of coefficients a k, . . . , dk requires first of all that Q and Z 
satisfy boundary conditions (2. l), which implies that the coefficients cl, di7 C2, d 2( 
a3einz and b,ei+ must be real (we use here (2.6)). At the same time any two local 

representations of function Q (or 2) must be the same in the common region of their 
determination. If, for example, we take the expressions for !Z! and 2 from (2.5) which 
are valid only within the circle 1 5 1 < 1 (k = 1) and extend ~Dil and @is with 
the use of known formulas [3] to the inside of circle ] 5 - 1 1 < 1, we obtain for Q 
and 2 new representations in that circle. However the latter for k = 2 must be the 
same as (2.5). which, by virtue of the linear independence of @i2 and CD*“, is equiva- 
lent to the congruence of coefficients at each of 6>: and CD:. This leads to equations 

relating a,, . . . . dI to a~, . . . . d,.The relationships between a2, . . . . da and a37 +..Y 

d3 are similarly derived. Omitting these somewhat cumbersome calculations, we only 
note the following results : 
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a2 = - I!&, 4 = 3, (1 + p) r (7) r (a + p - 7) 
r (4 r 0) 

b, = - tic, r (a + P + I- -f) r (a - P) e-in~ 
r (01 f 2 - TI r (4 

(2.9) 

ca = a3 (v + a - 2ip 16) I 2ip 

d, = b, (v - a + Zip I 6) I 2ip 

where I’ (a) is a gamma function and A , so far arbitrary, a parameter. 
Thus the solution of the boundary value problem (2.1) is of the form 

Q = U-J,, 2 = hZ, (2.10) 

with 52, and 2s from (2.5), cDl’f and @,k from (2. %),and uk, . . . . dk from (2.9), when 

h = 1 is set in the latter. 

8, Ptre aurfaca, 8sprrrtion boundrry, rnd prrrmcrtarr of image. 
By virtue of (1.3) in the neighborhood of the singular point ck we have 

r 
CO = Ok -/- h 

I 

52” tis 
i, ~~-t, z=z,-iih 5 

20 ds 

& c--o 

co1 = i IYT + p (L -h)], z1 = h 

w2 = 6, - 6R, z2 = - iR 

co3 = T, z3 = L - iT 

The w and z determined by these formulas are solutions of the considered problem 
then and only then, when any two “adjacent” representations for o (or z) are the same 
at their common point and conditions (1.1) are satisfied. It can be shown that these 

requirements are equivalent to the set of the following two systems of equations : 
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+C= 0 

T-R=)L c Re z a+ ds 

i 1/s-- 
L-h==h (X’1) 

As stated in Sect. 1 the channel width 2h and the maximum distance T of the free 
surface from the axis y = 0 are specified, Hence the first two equations of system 

(3.1) can be considered as defining parameters o and h, , and the last two the characteristic 
dimensions L and R of the lens. It appears that system (3.2) is satisfied for o, A, h, 
L and R determined in this manner. In fact, functions Q, /I/S- o and Zo/ r/p 

derived in Sect. 2 are regular and integrable at singular points ck. Hence the integrals 
of each of these taken along the real axis are zero. i. e. 

This implies, in particular, that 

’ Re Zo+ ds 
0 

L-h--h [ ~~ =A[+[ lm” -Aa y&y=0 
-m 

which is equivalent to the fourth equation of system (3.2) (the remaining equations are 
verified in a similar manner). 

We represent the equation for determining parameter o in the form 

With the use of the inequality 1 q 1 < p we can show that the numerator and the deno- 

minator in the formula for F (cr) are positive. It follows from the condition 1.5 < 
y < 2 [4] that F (+ 0) = Y / (1 f p) and F (1 - 0) = + 00. Hence for any 

positive values of parameters h and T such that 

(3.4) 

Eq. (3.3) is solvable along the segment 0 < o < 1. Denoting by Q the over-all dis- 
charge rate from the free surface I’t (QK-1 = VT + p (L - h)), we can write 

condition (3.4) in the form 
Q< Kh + KpL 

This means that the rate of discharge from the free surface owing to evaporation does 

not exceed (under stabilized conditions) the rate of discharge from the channel in the 
case of free filtration. The free surface is defined by 

-00 

y(F)=-_Th{m~~ 
r 

(--<_f<-1) = 

(3.5) 



The form of fresh-water lens for linear evaporation law 481 

It can be shown that dy I dt > 0 , and this gives meaning to the derived formula 
for ri. In the neighborhood of A (E ( 0 is close to zero) & / dy = ctg (%rp)- 

(-- W1k>rt / Q21 (PI > 0 is a constant), therefore at the limit 

dz I dy /A = Y / (1 + pLf > 0 

At the same time,if E is sufficiently small, & I dg > 0, i.e. 2 = 2 (y) increases 
locally strictly monotonically, which leads to the “depression” of the free surface [I]. 
Calculations show that this peculiarity, which is a shortcoming of the considered model, 
for real parameters appears only in a very small neighborhood of point A. The dividing 
boundary is of the form ._ 

z(E) = L - h 
c 

Im Z,)+ ds 

i j/s-_' 
y(g)=-T+h+f ygzt; (3.6) 

E 
(i<c<+4 

It can be shown that dz / dE > 0. Numerical calculations indicate a monotonic in- 
crease of y = y (x). 

4. CIlculrtioa rsrults. The dependence of the lens chareacteristic dimeno 
sions L and R on parameters p and v are shown in Fig. 4, where the upper pair of 

curves represent L = L (u) and the lower R = R f~)- 
for h = T = 1 and 6 = 0.1, Curves 1 and Z relate, 
respectively, to Y = 0.01 and 0.1, These curves indicate 
that the lens dimensions L and R depend to a greater 
extent on u than on v. A similar behavior is also charac- 
teristic of particular models, i. e. p = 0 or v = 0 Cl]. 

Fig. 4 Fig. 5 

For h = 5, T = 1, d = 0.1, v = 0.281 and p =r; 0 , L = 39.355 and H = 9.56 were 
obtained in El]. If in the considered here formulation the same values are specified 
for h, T, 8 and v. and p successively diminished (p= 0.01, 0.005, 0.001, 0.0005, and 
SO on}, L and R will tend to their limits: I, = 33.05, 27.41,35.43, 37.06 ,... and 
R = 9.07.9.26, 9.52, 9.57,... A similar agreement with the results obtained in El] are 
observed for Y -+ 0. 

The particular models (p = 0 or v = 0) suffer from the shortcoming in that the law 
of variation of evaporation intensity with depth does not conform to the real one [l] 
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which is fairly accurately approximated by the formula proposed in [S] 

e” (y) = eo (i + Y / Yo)~ (4.1) 

where KE*ds is the amount evaporated from the element ds of the free surface arc(s 
is measured from point A), KE, is the intensity of evaporation from the earth surface, 

and YO is the so-called critical depth beyond which evaporation is assumed to be zero. 
The exponent n is assumed to be between I and 3. In the considered formulation the 
evaporation intensity E from the free surface I1 is defined by 

E (s) = P dx I ds - v dy / ds (4.2) 

Results of calculations by this formula are given in Fig. 5, where curves l-4 define 
the behavior of e = E (y) for p = 0.005, 0.01, 0.02 and 0.08, respectively. Curve (5) 

calculated by (4.1) for n = 2 and yo = 2’ is shown there for comparison ; T = 1, 

h = 5, 6 = 0.1 and Y = 0.281 were assumed in this case. The comparison of these 
curves with the curve taken from [l] and denoted in Fig. 5 by zero shows that the simul- 

taneous introduction of parameters p and Y makes it on the whole possible to approxi- 

mate more accurately formula (4.1). 
It follows from (4.2) that for s = 0 

E(O) = vl v/Y2 + (1 + p)” 

Owing to the weak dependence of E (0) on u (u is small), we assumed in calculations 
that &o = v / 1/i $_ v2 , and parameter p was varied so as to obtain an acceptable 
agreement between formulas (4.2) and (4.1). The curves in Fig. 5 show that the assump- 

tions (1.2) are fairly reasonable, since even for p = 0.08 curve E (Y) determined by 
(4.2) lies as a whole considerably higher than curve E” (Y) determined by (4.1). 

The author thanks V. N. Emikh for numerous discussions on the formulation and solu- 
tion of the problem. 
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